Theoretical investigations of the aluminum/polythiophene interface

M. Boman*, S. Stafström, J. L. Brédas

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Interactions at the interface between aluminum and polythiophene are studied theoretically using ab initio Hartree-Fock and Møller-Plesset perturbation theories as well as semiempirical techniques. Aluminum is found to interact strongly with the polythiophene chain. The fundamental interaction unit corresponds to an aluminum dimer (Al2) bound to a single thiophene ring. This type of interaction strongly modifies the geometrical structure of the polymer chain and induces localization of the π-electron system. The calculated charge transfer between aluminum and the thiophene system is found to be in good agreement with the charge transfer deduced from experimental core level spectra of the aluminum/ polythiophene interface. A detailed analysis of the electronic structure, including the correlation effects, of a model system (Al2 interacting with α-trithienylene) is performed. Higher concentrations of aluminum atoms on a polythiophene chain results in the formation of additional Al2-thiophene complexes. Within the first monolayer, clustering of aluminum on polythiophene is shown to be energetically unfavorable.

Original languageEnglish (US)
Pages (from-to)9144-9153
Number of pages10
JournalThe Journal of chemical physics
Volume97
Issue number12
DOIs
StatePublished - 1992
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Theoretical investigations of the aluminum/polythiophene interface'. Together they form a unique fingerprint.

Cite this