Abstract
The thermodynamic property surfaces for a singlecomponent adsorbent + adsorbate system have been derived and developed from the view point of classical thermodynamics. These thermodynamic frameworks enable us to compute the specific heat capacity, partial enthalpy and entropy for the analyses of adsorption processes thoroughly. A theoretical framework for the estimation of the isosteric heat of adsorption between an adsorbate (vapor) and an adsorbent (solid) is also derived for the thermodynamic requirements of chemical equilibrium, Maxwell relations and the entropy of the adsorbed phase. Conventionally, the specific heat capacity of the adsorbate is assumed to correspond to its liquid phase specific heat capacity and more recently to that of its gas phase. We have shown here that the derived specific heat capacity fills up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase.
Original language | English (US) |
---|---|
Title of host publication | Energy Systems |
Subtitle of host publication | Analysis, Thermodynamics and Sustainability |
Publisher | American Society of Mechanical Engineers (ASME) |
Pages | 503-512 |
Number of pages | 10 |
ISBN (Electronic) | 0791843009 |
DOIs | |
State | Published - 2007 |
Externally published | Yes |
Event | ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007 - Seattle, United States Duration: Nov 11 2007 → Nov 15 2007 |
Publication series
Name | ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) |
---|---|
Volume | 6 |
Other
Other | ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 11/11/07 → 11/15/07 |
Bibliographical note
Publisher Copyright:Copyright © 2007 byASME.
ASJC Scopus subject areas
- Mechanical Engineering