TY - JOUR
T1 - The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote sensing-based evapotranspiration algorithms
AU - Michel, D.
AU - Jiménez, C.
AU - Miralles, Diego G.
AU - Jung, M.
AU - Hirschi, M.
AU - Ershadi, A.
AU - Martens, B.
AU - McCabe, Matthew
AU - Fisher, J. B.
AU - Mu, Q.
AU - Seneviratne, S. I.
AU - Wood, E. F.
AU - Fernández-Prieto, D.
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2015/10/20
Y1 - 2015/10/20
N2 - The WACMOS-ET project has compiled a forcing data set covering the period 2005 2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run 4 established ET algorithms: the Priestley Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman Monteith algorithm from the MODIS evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in-situ meteorological data from 24 FLUXNET towers was used to force the models, with results from both forcing sets compared to tower-based flux observations. Model performance was assessed across several time scales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement to the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements ($R^{2}$ = 0.67), the agreement of the satellite-based ET estimates is only marginally lower ($R^{2}$ = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. An extension of the evaluation to a larger selection of 85 towers (model inputs re-sampled to a common grid to facilitate global estimates) confirmed the original findings.
AB - The WACMOS-ET project has compiled a forcing data set covering the period 2005 2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run 4 established ET algorithms: the Priestley Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman Monteith algorithm from the MODIS evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in-situ meteorological data from 24 FLUXNET towers was used to force the models, with results from both forcing sets compared to tower-based flux observations. Model performance was assessed across several time scales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement to the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements ($R^{2}$ = 0.67), the agreement of the satellite-based ET estimates is only marginally lower ($R^{2}$ = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. An extension of the evaluation to a larger selection of 85 towers (model inputs re-sampled to a common grid to facilitate global estimates) confirmed the original findings.
UR - http://hdl.handle.net/10754/592892
UR - http://www.hydrol-earth-syst-sci-discuss.net/12/10739/2015/
U2 - 10.5194/hessd-12-10739-2015
DO - 10.5194/hessd-12-10739-2015
M3 - Article
SN - 1812-2116
VL - 12
SP - 10739
EP - 10787
JO - Hydrology and Earth System Sciences Discussions
JF - Hydrology and Earth System Sciences Discussions
IS - 10
ER -