The selection problem for some first-order stationary mean-field games

Diogo A. Gomes, Hiroyoshi Mitake, Kengo Terai

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Here, we study the existence and the convergence of solutions for the vanishing discount MFG problem with a quadratic Hamiltonian. We give conditions under which the discounted problem has a unique classical solution and prove convergence of the vanishing-discount limit to a unique solution up to constants. Then, we establish refined asymptotics for the limit. When those conditions do not hold, the limit problem may not have a unique solution and its solutions may not be smooth, as we illustrate in an elementary example. Finally, we investigate the stability of regular weak solutions and address the selection problem. Using ideas from Aubry-Mather theory, we establish a selection criterion for the limit.
Original languageEnglish (US)
Pages (from-to)681-710
Number of pages30
JournalNetworks and Heterogeneous Media
Volume15
Issue number4
DOIs
StatePublished - Sep 1 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-11-18
Acknowledged KAUST grant number(s): OSR-CRG2017-3452
Acknowledgements: D. Gomes was partially supported by King Abdullah University of Science and Technology (KAUST) baseline funds and KAUST OSR-CRG2017-3452. H. Mitake was partially supported by the JSPS grants: KAKENHI #19K03580, #19H00639, #17KK0093, #20H01816. K. Terai was supported by King Abdullah University of Science and Technology (KAUST) through the Visiting Student Research Program (VSRP) and by the JSPS grants: KAKENHI #20J10824.

Fingerprint

Dive into the research topics of 'The selection problem for some first-order stationary mean-field games'. Together they form a unique fingerprint.

Cite this