Abstract
In this article, the weak–strong uniqueness principle is proved for an Euler–Poisson system in the whole space, with initial data so that the strong solution exists. Some results on Riesz potentials are used to justify the considered weak formulation. Then, one follows the relative energy methodology and, in order to handle the solution of Poisson's equation, employs the theory of Riesz potentials.
Original language | English (US) |
---|---|
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Applicable Analysis |
DOIs | |
State | Published - Jun 28 2023 |
Bibliographical note
KAUST Repository Item: Exported on 2023-07-04Acknowledgements: The author would like to thank Professor Athanasios Tzavaras for many helpful conversations.
ASJC Scopus subject areas
- Analysis
- Applied Mathematics