The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

Thomas Burrell, Susan Fozard, Geoff H. Holroyd, Andrew P. French, Michael P. Pound, Christopher J. Bigley, C. James Taylor, Brian G. Forde

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m2, giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability.
Original languageEnglish (US)
JournalPlant Methods
Issue number1
StatePublished - Mar 1 2017
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was partly supported by funding from the UK Biotechnology and Biological Sciences Research Council (Grant No. BB/M004260/1). We are also very grateful to Prof Mark Tester, King Abdullah University of Science and Technology, Saudi Arabia for his financial support in enabling the manufacture of the injection moulds for the Phytostrips.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology'. Together they form a unique fingerprint.

Cite this