Abstract
The splash resulting from the impact of a drop onto a pool is a particularly beautiful manifestation of a canonical problem, where a mass of fluid breaks up into smaller pieces. Despite over a century of experimental study, the splashing mechanics have eluded full description, the details often being obscured by the very rapid motions and small length scales involved. Zhang et al. (J. Fluid Mech., vol. 690, 2012, pp. 515) introduce a powerful new tool to the experimental arsenal, when they apply X-ray imaging to study the fine ejecta sheets which emerge during the earliest contact of the drop. Their images reveal hidden details and complex underlying dynamics, which will directly affect the size and velocity of the splashing droplets. © 2011 Cambridge University Press.
Original language | English (US) |
---|---|
Pages (from-to) | 1-4 |
Number of pages | 4 |
Journal | Journal of Fluid Mechanics |
Volume | 690 |
DOIs | |
State | Published - Dec 20 2011 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Condensed Matter Physics