Abstract
We investigate the effects of magnetisation on the two-fluid plasma Richtmyer–Meshkov instability of a single-mode thermal interface using a computational approach. The initial magnetic field is normal to the mean interface location. Results are presented for a magnetic interaction parameter of 0.1 and plasma skin depths ranging from 0.1 to 10 perturbation wavelengths. These are compared to initially unmagnetised and neutral fluid cases. The electron flow is found to be constrained to lie along the magnetic field lines resulting in significant longitudinal flow features that interact strongly with the ion fluid. The presence of an initial magnetic field is shown to suppress the growth of the initial interface perturbation with effectiveness determined by plasma length scale. Suppression of the instability is attributed to the magnetic field’s contribution to the Lorentz force. This acts to rotate the vorticity vector in each fluid about the local magnetic-field vector leading to cyclic inversion and transport of the out-of-plane vorticity that drives perturbation growth. The transport of vorticity along field lines increases with decreasing plasma length scales and the wave packets responsible for vorticity transport begin to
coalesce. In general, the two-fluid plasma Richtmyer–Meshkov instability is found to be suppressed through the action of the imposed magnetic field with increasing effectiveness as plasma length scale is decreased. For the conditions investigated, a critical skin depth for instability suppression is estimated.
Original language | English (US) |
---|---|
Journal | Journal of Fluid Mechanics |
Volume | 903 |
DOIs | |
State | Published - Sep 30 2020 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-04Acknowledged KAUST grant number(s): URF/1/3418-01
Acknowledgements: This research was supported by the KAUST Office of Sponsored Research under Award URF/1/3418-01.