The kinetics of ice-lens growth in porous media

Robert W. Style, Stephen S. L. Peppin

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


Abstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an 'interfacial resistance' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.
Original languageEnglish (US)
Pages (from-to)482-498
Number of pages17
JournalJournal of Fluid Mechanics
StatePublished - Jan 9 2012
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-013-04
Acknowledgements: This publication was based on work supported by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'The kinetics of ice-lens growth in porous media'. Together they form a unique fingerprint.

Cite this