The kernel beta process

Lu Ren, Yingjian Wang, David Dunson, Lawrence Carin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

A new Lévy process prior is proposed for an uncountable collection of covariate-dependent feature-learning measures; the model is called the kernel beta process (KBP). Available covariates are handled efficiently via the kernel construction, with covariates assumed observed with each data sample ("customer"), and latent covariates learned for each feature ("dish"). Each customer selects dishes from an infinite buffet, in a manner analogous to the beta process, with the added constraint that a customer first decides probabilistically whether to "consider" a dish, based on the distance in covariate space between the customer and dish. If a customer does consider a particular dish, that dish is then selected probabilistically as in the beta process. The beta process is recovered as a limiting case of the KBP. An efficient Gibbs sampler is developed for computations, and state-of-the-art results are presented for image processing and music analysis tasks.
Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
StatePublished - Dec 1 2011
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2021-02-09

Fingerprint

Dive into the research topics of 'The kernel beta process'. Together they form a unique fingerprint.

Cite this