Abstract
We report the results of ultraviolet photoelectron spectroscopy (UPS) studies of the interaction between sodium and conjugated systems for a series of diphenylpolyees and diffrent oligomers of poly(p-phenylenevinylene) (PPV). The diphenylpolyenes include molecules containing two (i.e., stilbene) to 14 carbon atoms in the polyene part; stilbene itself can also be considered as a phenyl-capped monomer of PPV. Furthermore, a PPV oligomer with three phenylene units, as well as PPV itself, has been studied. The experimental results are interpreted with the help of quantum-chemical calculations using the Hartree-Fock semi-empirical Austin Model 1 (AM1) and valence-effective Hamiltonian (VEH) methods. An important result is that all the systems react strongly with sodium; at high doping levels two new doping-induced states are detected above the valence band edge of the pristine material. In the case of saturation-doped diphenylpolyenes (i.e., two sodiums per molecule), the new states can be discussed in terms of soliton-antisoliton pairs confined within the polyene part of the molecules; in contrast, the self-localized states induced in PPV and its oligomers have to be referred to as bipolarons.
Original language | English (US) |
---|---|
Pages (from-to) | 81-86 |
Number of pages | 6 |
Journal | Synthetic Metals |
Volume | 67 |
Issue number | 1-3 |
DOIs | |
State | Published - Nov 1994 |
Externally published | Yes |
Keywords
- Conjugated molecules and polymers
- Gap states
- Spectroscopy
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry