The effect of valve strategy on in-cylinder flow and combustion

Bengt Johansson*, Fredrik Soderberg

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

This study is focused on the effect of different valve strategies on the in-cylinder flow and combustion A conventional four-valve pentroof engine was modified to enable optical access to the combustion chamber To get information on the flow, a two-component LDV system was applied The combustion was monitored by the use of cylinder pressure in a one-zone heat release model The results show that the flow in the cylinder with the valves operating in the standard configuration has an expected tumble characteristic In this case the high frequency turbulence is homogeneous and has a peak approximately 20 CAD BTDC With one valve deactivated, the flow shows a swirling pattern The turbulence is then less homogeneous but the level of turbulence is increased When the single inlet valve was phased late against the crankshaft dramatic effects on the flow resulted The late inlet valve opening introduced a low cylinder pressure before the valve opened The high pressure difference across the valve introduced a high-velocity jet into the cylinder Turbulence was increased by a factor of two by this operational mode When two inlet valves were used, a reduction of turbulence resulted from a very late inlet cam phase

Original languageEnglish (US)
DOIs
StatePublished - Dec 1 1996
EventInternational Congress and Exposition - Detroit, MI, United States
Duration: Feb 26 1996Feb 29 1996

Other

OtherInternational Congress and Exposition
Country/TerritoryUnited States
CityDetroit, MI
Period02/26/9602/29/96

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'The effect of valve strategy on in-cylinder flow and combustion'. Together they form a unique fingerprint.

Cite this