Temperature measurements in a wall stabilized steady flame using CARS

Krishna Sesha Giri, Deanna Lacoste, Jason Damazo, Eddie Kwon, William L. Roberts

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Flame quenching by heat loss to a surface continues to be an active area of combustion research. Close wall temperature measurements in an isothermal wall-stabilized flame are reported in this work. Conventional N2-vibrational Coherent Anti-Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K). Methane/air and ethylene/air stoichiometric flames for various global strain rates based on exit bulk velocities are plotted and compared. CH* chemiluminescence is employed to determine the flame location relative to the wall. Flame locations are shown to move closer to the wall with increasing strain rates in addition to higher near-wall temperatures. Peak temperatures for ethylene are considerably higher (~250-300K) than peak temperatures for methane. Preheat zone profiles are similar for different strain rates across fuels. This work demonstrates close wall precise temperature measurments using CARS.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Electronic)9781624104473
DOIs
StatePublished - 2017
Event55th AIAA Aerospace Sciences Meeting - Grapevine, United States
Duration: Jan 9 2017Jan 13 2017

Publication series

NameAIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Conference

Conference55th AIAA Aerospace Sciences Meeting
Country/TerritoryUnited States
CityGrapevine
Period01/9/1701/13/17

Bibliographical note

Publisher Copyright:
© 2017 by the American Institute of Aeronautics and Astronautics, Inc.

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Temperature measurements in a wall stabilized steady flame using CARS'. Together they form a unique fingerprint.

Cite this