Abstract
Concentrating PV thermal (CPVT) collector with spectral splitting technology is a promising solution for heat and electricity production. To extend the use of this technology, a novel and cost-effective CPVT collector for harsh environments, such as those in Saudi Arabia, is presented and evaluated using theoretical energy, economy, and environmental analysis. Two questions are answered in this study, namely: which is the best operation strategy, and which is the best energy storage technology for CPVT. The potential of using a CPVT under the climate conditions of six cities in Saudi Arabia is also evaluated. It is found that a heat/electricity production strategy and a thermal energy storage are the most suitable for the CPVT technology. The economic assessment shows a levelized cost of electricity (LCOE) of $0.0847/kWh and a levelized cost of heat (LCOH) of $0.0536/kWh when water is used as a spectral filter, and a LCOE of $0.0906/kWh and a LCOH of $0.0462/kWh when ZnO nanoparticles are added. The CO2-equivalent emissions in a 20 MW CPVT plant are cut from 5675 tonnes to 7822 tonnes per year for Saudi Arabian weather and present power generation conditions.
Original language | English (US) |
---|---|
Article number | 5392 |
Journal | Energies |
Volume | 16 |
Issue number | 14 |
DOIs | |
State | Published - Jul 2023 |
Bibliographical note
Funding Information:The authors gratefully acknowledge the funding of the King Abdullah University of Science and Technology.
Publisher Copyright:
© 2023 by the authors.
Keywords
- CPVT
- solar energy
- spectral filtering
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering