Abstract
In the quest for efficiency improvement in heavy duty truck engines, waste heat recovery could play a valuable role. The evaporative cycle is a waste heat recovery technology aimed at improving efficiency and decreasing emissions. A humid air motor (HAM) uses the waste heat from the exhaust of the engine to humidify the inlet air; this humid air, with higher specific heat, reduces NOx emission to a greater extent [1] [2]. Despite this benefit of emission reduction, the increase or decrease in efficiency of the humid air motor compared to the conventional engine is not discussed in the literature [3] [4] [5]. In this paper, an attempt is made to study the efficiency of the HAM using system model simulations of a 13-liter heavy duty Volvo engine with a humidifier. The commercial software GT-SUITE is used to build the system model and to perform the simulations. The efficiency improvement of the HAM comes from the expansion of the vapor mass flow produced as a result of humidification. An effort is also made to understand the relationship between the humidified engine and its efficiency.
Original language | English (US) |
---|---|
Journal | SAE Technical Papers |
Volume | 11 |
DOIs | |
State | Published - 2013 |
Externally published | Yes |
Event | SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013 - Seoul, Korea, Republic of Duration: Oct 21 2013 → Oct 23 2013 |
ASJC Scopus subject areas
- Automotive Engineering
- Safety, Risk, Reliability and Quality
- Pollution
- Industrial and Manufacturing Engineering