System Modeling of Virus Transmission and Detection in Molecular Communication Channels

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Aerosol Transmission is one of the major spread mechanism for diseases and is responsible for transmission of virus over long distances. The advancement in nanotechnology has resulted in sensors and systems that allow us to deal with nanosized biological entities such as virus and bacteria. In this work, the idea of viewing virus transmission through aerosols and their transport as a molecular communication problem is introduced. In such problems one has little or no control over transmission, however, a robust receiver can be designed using nano-biosensors for information extraction. Thus, the objective of this work is to treat viral aerosol spread as a blind communication problem and present a mathematical model for it. Specifically, we study the virus transmission from an engineering perspective and derive an end-to-end mathematical model for virus transmission in the atmosphere. The receiver architecture composed of air sampler and Silicon Nanowire field effect transistor is also discussed. Furthermore, a detection problem is formulated and simulation results are reported that justify the feasibility of such setups in bio-monitoring applications.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Communications, ICC 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781538631805
DOIs
StatePublished - Jul 27 2018
Event2018 IEEE International Conference on Communications, ICC 2018 - Kansas City, United States
Duration: May 20 2018May 24 2018

Publication series

NameIEEE International Conference on Communications
Volume2018-May
ISSN (Print)1550-3607

Conference

Conference2018 IEEE International Conference on Communications, ICC 2018
Country/TerritoryUnited States
CityKansas City
Period05/20/1805/24/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'System Modeling of Virus Transmission and Detection in Molecular Communication Channels'. Together they form a unique fingerprint.

Cite this