Abstract
Realizing quantitative surface-enhanced Raman scattering (SERS) analysis is extremely helpful and challenging. Here, we utilize a facile method to synthesize spiked plasmonic nanorods with an interior gap. The Raman signal from the molecules embedded in the gap can be dramatically enhanced, leading to strong, stable, and reproducible SERS signals that can be used as an internal reference for quantitative SERS analysis. We demonstrate that the rough exterior surface has a good performance in enhancing the Raman signal of polycyclic aromatic hydrocarbon molecules adsorbed on the surface. The result shows that this method is applicable for a large range of analyte concentrations and there is an excellent linear relationship between the SERS intensity ratio and the analyte concentration (0.5-100 μM).
Original language | English (US) |
---|---|
Pages (from-to) | 14399-14405 |
Number of pages | 7 |
Journal | ACS OMEGA |
Volume | 3 |
Issue number | 10 |
DOIs | |
State | Published - Oct 30 2018 |
Bibliographical note
Publisher Copyright:© 2018 American Chemical Society.
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering