Synthesis of novel Au@Void@Nb2O5 core-shell nanocomposites with enhanced photocatalytic activity

Jiaquan Bai, Jiao Xue, Runwei Wang, Zongtao Zhang, Shilun Qiu

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Nb2O5 as a semiconductor material has attracted significant attention in recent years due to its outstanding advantages. In this article, novel Au@Void@Nb2O5 core-shell nanocomposites have been fabricated through a facile sol-gel method. The construction process of this core-shell nanostructure has been presented in detail. The as-prepared core-shell nanostructure exhibits nanosphere morphology with Nb2O5 acting as the shell and Au nanoparticles acting as the core, which was proved using SEM and TEM. The noble metal Au core protected by the Nb2O5 shell promotes an interfacial charge-transfer process. The core-shell nanocomposites demonstrate excellent visible light absorption, as shown by the UV-Vis diffuse reflectance spectra. The as-prepared photocatalyst Au@Void@Nb2O5-2 calcined at 300 °C exhibits higher photocatalytic efficiency than Au@SiO2@Nb2O5-2-300 °C, Nb2O5 and P25, as evaluated by the degradation of rhodamine B (Rh B) under visible light. In the photodegradation process of the Rh B solution, holes (h+) play a more important role than hydroxyl radicals (OH) over the as-prepared photocatalyst, which was analyzed using active species trapping experiments and photoluminescence (PL) spectroscopy. Moreover, the photocatalyst Au@Void@Nb2O5-2 calcined at 300 °C exhibits excellent durability of its photocatalytic activity even after five successive cycles. This contribution gives a new perspective for designing and preparing novel metal-Nb2O5 nanostructure catalysts applied in environmental treatments.
Original languageEnglish (US)
Pages (from-to)3400-3407
Number of pages8
JournalDalton Transactions
Volume47
Issue number10
DOIs
StatePublished - Jan 31 2018
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2022-06-08
Acknowledged KAUST grant number(s): CRG-1-2012-LAI-009
Acknowledgements: This work was financially supported by the National Natural Science Foundation of China (21390394, 21771082 and 21771081), National Basic Research Program of China (2012CB821700 and 2011CB808703), NSFC (21261130584 and 91022030), "111" project (B07016), Award Project of KAUST (CRG-1-2012-LAI-009) and Ministry of Education, Science and Technology Development Center Project (20120061130012).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

ASJC Scopus subject areas

  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Synthesis of novel Au@Void@Nb2O5 core-shell nanocomposites with enhanced photocatalytic activity'. Together they form a unique fingerprint.

Cite this