Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

Rajeev Ananda Kumar, Bin Zheng, Kuo-Wei Huang, Jack I. Emert, Rudolf Faust

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)1959-1965
Number of pages7
JournalMacromolecules
Volume47
Issue number6
DOIs
StatePublished - Mar 10 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Financial support from Infineum USA is greatly appreciated.

ASJC Scopus subject areas

  • Materials Chemistry
  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes'. Together they form a unique fingerprint.

Cite this