Synthesis of Core-Shell Structured MnO2 Petal Nanosheet@Carbon Sphere Composites and Their Application as Supercapacitor Electrodes

Xiao-Ping Chen, Jie Wen, Chun-Xia Zhao, Yun-Tao Li, Ning Wang

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

A novel MnO petal nanosheet@carbon sphere core-shell structure was successfully fabricated by adjusting the quantity of the KMnO precursor employed during the in situ growth of MnO on the surface of carbon spheres via a facile hydrothermal method. In the presence of low KMnO contents, only MnOOH was generated. In contrast, upon increasing the quantity of KMnO, δ-MnO nanorods and petal nanosheets were obtained, thereby allowing the formation of the core-shell structured δ-MnO petal nanosheet@carbon sphere composites. However, beyond a certain point, further increases in the KMnO content were unfavorable. Although, prepared MnO/carbon sphere composites of different morphologies can be used for supercapacitors (SCs) electrode materials, we found that the core-shell structured MnO petal nanosheet@carbon sphere composites exhibited the optimal capacitance performances in all the composites. These composites exhibited an excellent specific capacitance of 231 F⋅g under a current density of 0.5 A⋅g. Furthermore, they also demonstrated an impressive cycling stability. Indeed, after 1,000 cycles at 10 A⋅g, the MnO petal nanosheet@carbon spheres exhibited 96% of their initial capacitance in a 1 M NaSO aqueous electrolyte. The synergistic effect between δ-MnO and the porous carbon spheres in the unique core-shell structured is responsible for the excellent cycle life.
Original languageEnglish (US)
Pages (from-to)9301-9307
Number of pages7
JournalChemistrySelect
Volume3
Issue number32
DOIs
StatePublished - Aug 27 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 21606058 and No. 21206139).

Fingerprint

Dive into the research topics of 'Synthesis of Core-Shell Structured MnO2 Petal Nanosheet@Carbon Sphere Composites and Their Application as Supercapacitor Electrodes'. Together they form a unique fingerprint.

Cite this