Synergic Swelling of Interactive Network Support and Block Copolymer Films during Solvent Vapor Annealing

Wojciech Ogieglo, Anja Stenbock-Fermor, Thomas M. Juraschek, Yulia Bogdanova, Nieck Benes, Larisa A. Tsarkova

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We report the effect of “interactive” polymer network (PN) supports on the solvent-vapor processing of thin polymer films. Densely cross-linked surface-attached network exhibits under experimental time scale a glassy swelling behavior with the conformational states and solvent-uptake clearly sensitive to the degree of solvent vapor saturation in the atmosphere. Pretreatment of the thermally cured PN films by complete immersion or by swelling in saturated chloroform vapors facilitates relaxation of the residual stresses and induces irreversible changes to the network structure as revealed by the swelling/deswelling tests. The presence of a polymer film on top of the PN support results in a mutual influence of the layers on the respective swelling kinetics, steady-state solvent uptake, and chain dynamics. Using UV–vis ellipsometry, we revealed a significantly faster swelling and higher solvent uptake of glassy PN layer below a polymer film as compared to a single PN layer on silicon substrate. Remarkably, the swelling of the network support continues to increase even when the overall swelling of the bilayer is in a steady-state regime. Block copolymer films on PN supports exhibit a faster ordering dynamics and exceptional stability toward dewetting as compared to similar films on silicon wafers. The mechanical stress produced by continuously swelling PN is suggested to account for the enhanced segmental dynamics even at low solvent concentration in the block copolymer film. Apart from novel insights into dynamics of solvent uptake by heterogeneous polymer films, these results might be useful in developing novel approaches toward fast-processing/annealing of functional polymer films and fibers.
Original languageEnglish (US)
Pages (from-to)9950-9960
Number of pages11
JournalLANGMUIR
Volume34
Issue number34
DOIs
StatePublished - Aug 28 2018

Bibliographical note

KAUST Repository Item: Exported on 2021-07-08
Acknowledgements: L.A.T. and Y.B. acknowledge the financial support by the Russian Foundation for Basic Research (RFBR) according to the research project no. 18-53-76005 in the framework of the ERA.Net Plus Project JetVA.

ASJC Scopus subject areas

  • Spectroscopy
  • General Materials Science
  • Surfaces and Interfaces
  • Electrochemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Synergic Swelling of Interactive Network Support and Block Copolymer Films during Solvent Vapor Annealing'. Together they form a unique fingerprint.

Cite this