Abstract
In this work, micro-fabrication, super-hydrophobic properties and a physiologically compatible preparation step are combined and tailored to obtain background free biological samples to be investigated by Transmission Electron Microscopy (TEM) diffraction technique. The validation was performed evaluating a well-known parameter such as the DNA interbases value. The diffraction spacing measured is in good agreement with those obtained by HRTEM direct metrology and by traditional X-Ray diffraction. This approach addresses single molecule studies in a simplified and reproducible straightforward way with respect to more conventional and widely used techniques. In addition, it overcomes the need of long and elaborated samples preparations: the sample is in its physiological environment and the HRTEM data acquisition occurs without any background interference, coating, staining or additional manipulation. The congruence in the results reported in this paper makes the application of this approach extremely promising towards those molecules for which crystallization remains a hurdle, such as cell membrane proteins and fibrillar proteins.
Original language | English (US) |
---|---|
Pages (from-to) | 39-42 |
Number of pages | 4 |
Journal | Microelectronic Engineering |
Volume | 187-188 |
DOIs | |
State | Published - Feb 5 2018 |
Bibliographical note
Publisher Copyright:© 2017
Keywords
- DNA
- Diffraction
- Interbases distance
- Super-hydrophobic devices
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering