Abstract
The design and fabrication of 2D nanostructure electrodes with desired electrochemical activities is highly demanded for electrocatalysis and supercapacitors. Herein, the tuned fabrication of ultrathin and tortuous nickel/cobalt-layered double hydroxide (NiCo-LDH) nanosheets via a graphene oxide (GO) surface-confined strategy is reported, yielding nanosheets with a thickness of 1.7–1.8 nm that is duplicated from the graphene oxides in terms of both the lateral size and the shape. It has been found that the C/O functional groups on the GO surface have functioned to promote the oxidation of Co2+ to Co3+, and to transform the β-phase NiCo-hydroxide (NiCo-OH) into the LDH-phase with tuned homogenous composition and geometry. The ultrathin NiCo-LDH nanosheets mimic the morphology and size of the graphene due to the surface-confined and/or surface-guided growth. The as-obtained NiCo-LDH-graphene (NiCo-LDH-G) nanosheets exhibit a superior electrocatalytic activity for oxygen evolution reaction, evidenced by a small overpotential of 0.337 V (@10 mA cm−2 in 0.1 m KOH electrolyte), and a high charge storage capability of 1489 F g−1 as electrodes for supercapacitors. This 2D surface-confined growth strategy may pave a way for the fabrication of ultrathin 2D materials including but not limited to transition metal hydroxides for high-performance electrochemical applications.
Original language | English (US) |
---|---|
Journal | Advanced Functional Materials |
Volume | 28 |
Issue number | 44 |
DOIs | |
State | Published - Oct 31 2018 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-21ASJC Scopus subject areas
- General Chemical Engineering
- Electronic, Optical and Magnetic Materials