Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity

Hyojung Cha, George Fish, Joel Luke, Ahmad Alraddadi, Hyun Hwi Lee, Weimin Zhang, Yifan Dong, Saurav Limbu, Andrew Wadsworth, Iuliana P. Maria, Laia Francàs, Hou Lon Sou, Tian Du, Ji-Seon Kim, Martyn A. McLachlan, Iain McCulloch, James R. Durrant

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


Here, it is investigated whether an energetic cascade between mixed and pure regions assists in suppressing recombination losses in non-fullerene acceptor (NFA)-based organic solar cells. The impact of polymer-NFA blend composition upon morphology, energetics, charge carrier recombination kinetics, and photocurrent properties are studied. By changing film composition, morphological structures are varied from consisting of highly intermixed polymer-NFA phases to consisting of both intermixed and pure phase. Cyclic voltammetry is employed to investigate the impact of blend morphology upon NFA lowest unoccupied molecular orbital (LUMO) level energetics. Transient absorption spectroscopy reveals the importance of an energetic cascade between mixed and pure phases in the electron–hole dynamics in order to well separate spatially localized electron–hole pairs. Raman spectroscopy is used to investigate the origin of energetic shift of NFA LUMO levels. It appears that the increase in NFA electron affinity in pure phases relative to mixed phases is correlated with a transition from a relatively planar backbone structure of NFA in pure, aggregated phases, to a more twisted structure in molecularly mixed phases. The studies focus on addressing whether aggregation-dependent acceptor LUMO level energetics are a general design requirement for both fullerene and NFAs, and quantifying the magnitude, origin, and impact of such energetic shifts upon device performance.
Original languageEnglish (US)
Pages (from-to)1901254
JournalAdvanced Energy Materials
Issue number27
StatePublished - Jun 12 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2015-CRG4-2572
Acknowledgements: The authors gratefully acknowledge funding received from KAUST under the grant agreement no. OSR-2015-CRG4-2572 and the EPSRC/GCRF project SUNRISE (EP/P032591/1) and the Global Research Laboratory Program of the National Research Foundation, funded by the Ministry of Science, ICT & Future Planning (NRF-2017K1A1A2013153). H.C. acknowledges Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1A6A3A03011245). J.L. acknowledges the UK EPSRC for the Plastic Electronics Centre for Doctoral Training (EP/L016702/1) funding and CSEM Brasil for studentship.


Dive into the research topics of 'Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity'. Together they form a unique fingerprint.

Cite this