Supercritical CO2-Shale interaction induced natural fracture closure: Implications for scCO2 hydraulic fracturing in shales

Shoaib Memon, Runhua Feng, Muhammad Ali, Masood Ahmed Bhatti, Ausama Giwelli, Alireza Keshavarz, Quan Xie, Mohammad Sarmadivaleh

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


Multi-stage hydraulic fracturing has been identified as a must to develop shale gas reservoirs by increasing the stimulated reservoir volume (SRV). Supercritical CO2 (scCO2) has been studied as an alternating fracturing fluid due to its tendency to solve numerous problems associated with conventional aqueous based hydraulic fracturing such as formation damage, clay swelling, water scarcity and ground water contamination. However, its consequences to the host rock are not well understood. It has been recognized that scCO2-shale interaction alters the petrophysical properties during the long-term exposure of shale into scCO2, far little attention has been paid to understand the impact of this process for the short term. Thus, laboratory fracturing experiments using scCO2 on cubic shale samples (50 × 50 × 50 mm) in true triaxial stress cell (TTSC) were conducted. X-ray computed tomography (CT) imaging and low-pressure N2 adsorption were also performed to gain a deeper understanding of the fluid-rock interactions on the studied shales at a short-time process. Post-fracturing x-ray CT scans revealed a significant reduction, in the range of 14% to 46%, in the aperture of the natural fractures, indicating towards a possible scCO2 induced swelling. Mechanical compression test on the sample results in around 12% reduction in the fracture aperture, ruling out the possibility of confining stress being the key factor behind the fracture closure observed during fracturing. scCO2 soaking and N2 adsorption experiments showed the narrowing down of the macropores after scCO2 treatment implying the adsorption swelling as one of the controlling factors for the reduction of fracture aperture. Taken together, our results suggest that scCO2-shale interactions during the short term process of hydraulic fracturing can contribute to decreasing the conductivity of pathways between matrix and hydraulic fractures and hence adversely affecting the post-fracturing productivity of the rock.
Original languageEnglish (US)
Pages (from-to)122682
StatePublished - Nov 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-12-22
Acknowledgements: The author acknowledges the support provided by the Australian Government and Curtin University for providing the funding under their Research Training Program Scholarship and provision of the required support, facilities, and equipment for this research. The author is thankful to Edith Cowan University and Commonwealth Scientific and Industrial Research Organisation (CSIRO), specially Mr. Shane Kager, Dr. Joel Sarout, Dr. Jeremie Dautriat, Dr. Lionel Estebin, Mr. Michael Verall, Mr. David Nguyen and Mr. Hamed Akhondzadeh, for providing support and access to their laboratory equipment. The author is also grateful to the National Geosequestration Laboratory (NGL) of Australia for providing funding to build the stress cell. Funding for this facility was provided by the Australian Federal Government. In addition, the author would like to appreciate the support provided by Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia in providing access to their data analysis and visualisation resources. In the end, the author is thankful to Dr. Jamiu Ekundayo and Mr. Faaiz Al-shajalee for their special assistance during revision of this manuscript.

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Organic Chemistry
  • General Chemical Engineering
  • Fuel Technology


Dive into the research topics of 'Supercritical CO2-Shale interaction induced natural fracture closure: Implications for scCO2 hydraulic fracturing in shales'. Together they form a unique fingerprint.

Cite this