Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

Robert Luxenhofer, Gaurav Sahay, Anita Schulz, Daria Alakhova, Tatiana K. Bronich, Rainer Jordan, Alexander V. Kabanov

Research output: Contribution to journalArticlepeer-review

178 Scopus citations

Abstract

The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high concentrations. Furthermore, we report structure-uptake relationships of a series of amphiphilic POx block copolymers that have different architectures, molar mass and chain termini. The rate of endocytosis can be fine-tuned over a broad range by changing the polymer structure. The cellular uptake increases with the hydrophobic character of the polymers and is observed even at nanomolar concentrations. Considering the structural versatility of this class of polymers, the relative ease of preparation and their stability underlines the potential of POx as a promising platform candidate for the preparation of next-generation polymer therapeutics.
Original languageEnglish (US)
Pages (from-to)73-82
Number of pages10
JournalJournal of Controlled Release
Volume153
Issue number1
DOIs
StatePublished - Jul 2011
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-F1-029-32
Acknowledgements: RI gratefully acknowledges a postdoctoral fellowship of the Deutscher Akademischer Austauschdienst (DAAD) and the King Abdullah University of Science and Technology (KAUST, Award No. KUK-F1-029-32) for partial salary support. This study was supported by National Institutes of Health grants 1P20 RR021937, UO1 CA151806 and 2RO1 CA89225 awarded to AVK and the DFG Forschergruppe FOR411 "Radionuklidtherapie" awarded to RJ (project P12). We would also like to thank the flow cytometry and confocal microscopy core facilities at UNMC.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles'. Together they form a unique fingerprint.

Cite this