Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate

Haiding Sun, Feng Wu, Talal Mohammed Ahmad Altahtamouni, Nasir Alfaraj, Kun Li, Theeradetch Detchprohm, Russell D. Dupuis, Xiaohang Li

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The growth of high quality AlN epitaxial films relies on precise control of the initial growth stages. In this work, we examined the influence of the trimethylaluminum (TMAl) pretreatment of sapphire substrates on the structural properties, crystal quality and growth modes of heteroepitaxial AlN films on (0001) sapphire substrates. Without the pretreatment, the AlN films nucleated on the smooth surface but exhibited mixed crystallographic Al- (N-) polarity, resulting in rough AlN film surfaces. With increasing the pretreatment time from 1 to 5 s, the N-polarity started to be impeded. However, small islands were formed on sapphire surface due to the decompostion of TMAl. As a result, small voids became noticeable at the nucleation layer (NL) because the growth started as quasi three-dimensional (3D) but transformed to 2D mode as the film grew thicker and got coalesced, leading to smoother and Al-polar films. On the other hand, longer pretreatment time of 40 s formed large 3D islands on sapphire, and thus initiated a 3D-growth mode of the AlN film, generating Al-polar AlN nanocolumns with different facets, which resulted into rougher film surfaces. The epitaxial growth modes and their correlation with the AlN film crystal quality under different TMAl pretreatments are also discussed.
Original languageEnglish (US)
Pages (from-to)395101
JournalJournal of Physics D: Applied Physics
Volume50
Issue number39
DOIs
StatePublished - Sep 7 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The KAUST authors would like to acknowledge the support of GCC Research Program REP/1/3189-01-01, Baseline BAS/1/1664-01-01, and Equipment BAS/1/1664-01-07. The work at QU was supported by GCC Research Program GCC-2017-007. The work at Georgia Institute of Technology was supported in part by DARPA under grant W911NF-15-1-0026 and NSF under grant DMR-1410874. RDD acknowledges the additional support of the Steve W. Chaddick Endowed Chair in Electro-Optics and Georgia Research Alliance.

Fingerprint

Dive into the research topics of 'Structural properties, crystal quality and growth modes of MOCVD-grown AlN with TMAl pretreatment of sapphire substrate'. Together they form a unique fingerprint.

Cite this