Structural Effects in Visible-Light-Responsive Metal-Organic Frameworks Incorporating ortho-Fluoroazobenzenes

Sonia Castellanos*, Alexis Goulet-Hanssens, Fangli Zhao, Alla Dikhtiarenko, Alexey Pustovarenko, Stefan Hecht, Jorge Gascon, Freek Kapteijn, David Bléger

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

84 Scopus citations


The ability to control the interplay of materials with low-energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal-organic frameworks (MOFs) were synthesized from the same linker bearing all-visible ortho-fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al-based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light-heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid-phase applications such as light-controlled catalysis and adsorptive separation.

Original languageEnglish (US)
Pages (from-to)746-752
Number of pages7
JournalChemistry - A European Journal
Issue number2
StatePublished - Jan 11 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


  • azo compounds
  • carboxylate ligands
  • metal-organic frameworks
  • photochromism
  • photoswitches

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry


Dive into the research topics of 'Structural Effects in Visible-Light-Responsive Metal-Organic Frameworks Incorporating ortho-Fluoroazobenzenes'. Together they form a unique fingerprint.

Cite this