Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8

Qin Gong, Kim Robinson, Chenrui Xu, Phuong Thao Huynh, Kelvin Han Chung Chong, Eddie Yong Jun Tan, Jiawen Zhang, Zhao Zhi Boo, Daniel Eng Thiam Teo, Kenneth Lay, Yaming Zhang, John Soon Yew Lim, Wah Ing Goh, Graham Wright, Franklin L. Zhong, Bruno Reversade, Bin Wu

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Nod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells—a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.
Original languageEnglish (US)
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-15

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Chemistry
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8'. Together they form a unique fingerprint.

Cite this