Abstract
The strong coupling between exciton and photon modes in a conjugated polymer-based semiconductor microcavity was observed. The σ-conjugated poly(bis(p-butylphenyl)silane) (PBPS) thin films were inserted between metal and dielectric stack mirrors to form the microcavity structure. Change of the PBPS film-thickness (from 80 to 140 nm) allowed the cavity photon resonance to be tuned in the free-exciton transition. The expected anti-crossing behaviour was observed at room temperature in the reflection spectra and the vacuum Rabi-splitting energy was found to be about 430 meV. This giant value is almost the same as the expectations of transfer matrix reflectivity calculations performed with optical constants (refractive index: n, extinction coefficient: κ) derived from a Kramers-Kronig analysis of the PBPS absorption spectrum. Angle-dependent photoluminescence measurements were performed in each PBPS-based microcavity. In the microcavity with a 120nm-PBPS layer, the polariton emission that displays almost no blueshifts with angle was observed, a desirable feature for potential display applications.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of SPIE - The International Society for Optical Engineering |
State | Published - Dec 1 2003 |
Externally published | Yes |