Stretchable Redox-active Semiconducting Polymers for High-performance Organic Electrochemical Transistors

Yahao Dai, Shilei Dai, Nan Li, Yang Li, Maximilian Moser, Joseph Strzalka, Aleksander Prominski, Youdi Liu, Qingteng Zhang, Songsong Li, Huawei Hu, Wei Liu, Shivani Chatterji, Ping Cheng, Bozhi Tian, Iain McCulloch, Jie Xu, Sihong Wang

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Organic electrochemical transistor (OECT) is an emerging device platform for next-generation bioelectronics owing to its uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue-electronics interfaces for accurate signal acquisition, skin-like softness and stretchability are essential requirements, which have not yet been imparted onto high-performance OECTs, largely due to the lack of stretchable redox-active semiconducting polymers. Here, we report a stretchable semiconductor for OECT devices, namely poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with the OECT performance on par with the state of the art. Validated by the systematic characterizations and the comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are non-linear backbone architecture, moderate side-chain density, and sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, we fabricated an intrinsically stretchable OECT with the high normalized transconductance (∼223 S cm-1 ) and biaxial stretchability up to 100% strain. Furthermore, we demonstrate on-skin electrocardiogram (ECG) recording that combines built-in amplification and unprecedented skin conformability.
Original languageEnglish (US)
Pages (from-to)2201178
JournalAdvanced Materials
DOIs
StatePublished - Apr 21 2022

Bibliographical note

KAUST Repository Item: Exported on 2022-04-26
Acknowledgements: Supported by the US Office of Naval Research (N00014-21-1-2266) and a start-up fund from the University of Chicago. J.X. acknowledges the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility and supported by the US Department of Energy Office of Science, under contract DE-AC02-06CH11357. This research used resources of the Advanced Photon Source, a US Department of Energy Office of Science User Facility, operated for the Department of Energy Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357.All the experiments involving human subjects have been approved by the University of Chicago Biological Sciences Division/University of Chicago Medical Center Institutional Review Boards, with the assigned study/project number of IRB20-1412; and written informed consent was obtained from all participants

ASJC Scopus subject areas

  • Mechanics of Materials
  • General Materials Science
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Stretchable Redox-active Semiconducting Polymers for High-performance Organic Electrochemical Transistors'. Together they form a unique fingerprint.

Cite this