Sticky hidden Markov modeling of comparative genomic hybridization

Lan Du, Minhua Chen, Joseph Lucas, Lawrence Carin

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We develop a sticky hidden Markov model (HMM) with a Dirichlet distribution (DD) prior, motivated by the problem of analyzing comparative genomic hybridization (CGH) data. As formulated the sticky DD-HMM prior is employed to infer the number of states in an HMM, while also imposing state persistence. The form of the proposed hierarchical model allows efficient variational Bayesian (VB) inference, of interest for large-scale CGH problems. We compare alternative formulations of the sticky HMM, while also examining the relative efficacy of VB and Markov chain Monte Carlo (MCMC) inference. To validate the formulation, example results are presented for an illustrative synthesized data set and our main applicationCGH, for which we consider data for breast cancer. For the latter, we also make comparisons and partially validate the CGH analysis through factor analysis of associated (but distinct) gene-expression data. © 2010 IEEE.
Original languageEnglish (US)
Pages (from-to)5353-5368
Number of pages16
JournalIEEE Transactions on Signal Processing
Volume58
Issue number10
DOIs
StatePublished - Oct 1 2010
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2021-02-09

Fingerprint

Dive into the research topics of 'Sticky hidden Markov modeling of comparative genomic hybridization'. Together they form a unique fingerprint.

Cite this