Abstract
With the aim of explaining the formal development behind the chaos-based modeling of network traffic and other similar phenomena, here we generalize the tools presented in the companion paper (Setti et al., 2002) to the case of piecewise-affine Markov maps with a possibly infinite, but countable number of Markov intervals. Since, in doing so, we keep the dimensionality of the space of the observables finite, we still obtain a finite tensor-based framework. Nevertheless, the increased complexity of the model forces the use of tensors of functions whose handling is greatly simplified by extensive a transformation. With this, a systematic procedure is devised to write analytical expressions for the tensors that take into account the joint probability assignments needed to compute any-order expectations. As an example of use, this machinery is finally applied to the study of self-similarity of quantized processes both in the analysis of higher order phenomena as well as in the analysis and design of second-order self-similar sources suitable for artificial network traffic generation. © 2002 IEEE.
Original language | English (US) |
---|---|
Pages (from-to) | 820-841 |
Number of pages | 22 |
Journal | Proceedings of the IEEE |
Volume | 90 |
Issue number | 5 |
DOIs | |
State | Published - Jan 1 2002 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-15ASJC Scopus subject areas
- Electrical and Electronic Engineering