TY - JOUR
T1 - State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties
AU - Noureldine, Dalal
AU - Takanabe, Kazuhiro
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this work was supported by the King Abdullah University of Science and Technology (KAUST).
PY - 2016
Y1 - 2016
N2 - Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.
AB - Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.
UR - http://hdl.handle.net/10754/622469
UR - http://pubs.rsc.org/en/Content/ArticleLanding/2016/CY/C6CY01666A
UR - http://www.scopus.com/inward/record.url?scp=84994000759&partnerID=8YFLogxK
U2 - 10.1039/c6cy01666a
DO - 10.1039/c6cy01666a
M3 - Article
SN - 2044-4753
VL - 6
SP - 7656
EP - 7670
JO - Catal. Sci. Technol.
JF - Catal. Sci. Technol.
IS - 21
ER -