Abstract
Because of its high energy density and low cost, the room-temperature sodium-sulfur (RT Na-S) battery is a promising candidate to power the next-generation large-scale energy storage system. However, its practical utilization is hampered by the short life span owing to the severe shuttle effect, which originates from the "solid-liquid-solid"reaction mechanism of the sulfur cathode. In this work, fluoroethylene carbonate is proposed as an additive, and tetraethylene glycol dimethyl ether is used as the base solvent. For the sulfurized polyacrylonitrile cathode, a robust F-containing cathode-electrolyte interphase (CEI) forms on the cathode surface during the initial discharging. The CEI prohibits the dissolution and diffusion of the soluble intermediate products, realizing a "solid-solid"reaction process. The RT Na-S cell exhibits a stable cycling performance: a capacity of 587 mA h g-1 is retained after 200 cycles at 0.2 A g-1 with nearly 100% Coulombic efficiency.
Original language | English (US) |
---|---|
Pages (from-to) | 6658-6666 |
Number of pages | 9 |
Journal | ACS Applied Materials and Interfaces |
Volume | 14 |
Issue number | 5 |
DOIs | |
State | Published - Feb 9 2022 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-20ASJC Scopus subject areas
- General Materials Science