Abstract
We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.
Original language | English (US) |
---|---|
Pages (from-to) | 1039-1062 |
Number of pages | 24 |
Journal | Mathematics of Computation |
Volume | 83 |
Issue number | 287 |
DOIs | |
State | Published - Oct 3 2013 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: This material is based upon work supported by the Department of Homeland Security under agreement 2008-DN-077-ARI018-02, National Science Foundation grants DMS-0811041, DMS-0914977, DMS-1015984, AF Office of Scientific Research grant FA99550-12-0358, and is partially supported by award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST)
This publication acknowledges KAUST support, but has no KAUST affiliated authors.