TY - GEN
T1 - Stability analysis of electrostatically actuated resonators with delayed feedback controller
AU - Alsaleem, Fadi
AU - Younis, Mohammad I.
PY - 2010
Y1 - 2010
N2 - In this work we investigate the stability of parallel-plate electrostatic MEMS resonators using a delayed feedback controller. Two case studies are investigated: a capacitive sensor made of cantilever beams with a proof mass at their tip and a clamped-clamped microbeam. Dover-cliff integrity curves and basin-of-attraction analysis are used for the stability assessment of the frequency response of the resonators for several scenarios of positive and negative gain in the controller. It is found that, in the case of a positive gain, a velocity or a displacement feedback controller can be used to effectively enhance the stability of the resonators. This is confirmed by an increase in the area of the safe basin of attraction and in shifting the Dover-cliff curve upward. On the other hand, it is shown that a negative gain can significantly weaken the stability of the resonators. This can be of useful use in MEMS for actuation applications, such as in the case of capacitive switches, to lower the activation voltage of these devices and to ensure their trigger under all initial conditions.
AB - In this work we investigate the stability of parallel-plate electrostatic MEMS resonators using a delayed feedback controller. Two case studies are investigated: a capacitive sensor made of cantilever beams with a proof mass at their tip and a clamped-clamped microbeam. Dover-cliff integrity curves and basin-of-attraction analysis are used for the stability assessment of the frequency response of the resonators for several scenarios of positive and negative gain in the controller. It is found that, in the case of a positive gain, a velocity or a displacement feedback controller can be used to effectively enhance the stability of the resonators. This is confirmed by an increase in the area of the safe basin of attraction and in shifting the Dover-cliff curve upward. On the other hand, it is shown that a negative gain can significantly weaken the stability of the resonators. This can be of useful use in MEMS for actuation applications, such as in the case of capacitive switches, to lower the activation voltage of these devices and to ensure their trigger under all initial conditions.
UR - http://www.scopus.com/inward/record.url?scp=80054986772&partnerID=8YFLogxK
U2 - 10.1115/DETC2010-29036
DO - 10.1115/DETC2010-29036
M3 - Conference contribution
AN - SCOPUS:80054986772
SN - 9780791844120
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 785
EP - 793
BT - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
T2 - ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Y2 - 15 August 2010 through 18 August 2010
ER -