(Sr 1-xBa x)FeO 2 (0.4 ≤ x ≤ 1): A new oxygen-deficient perovskite structure

Takafumi Yamamoto, Yoji Kobayashi, Naoaki Hayashi, Cédric Tassel, Takashi Saito, Shoji Yamanaka, Mikio Takano, Kenji Ohoyama, Yuichi Shimakawa, Kazuyoshi Yoshimura, Hiroshi Kageyama

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Topochemical reduction of (layered) perovskite iron oxides with metal hydrides has so far yielded stoichiometric compositions with ordered oxygen defects with iron solely in FeO 4 square planar coordination. Using this method, we have successfully obtained a new oxygen-deficient perovskite, (Sr 1-xBa x)FeO 2 (0.4 ≥ x ≥ 1.0), revealing that square planar coordination can coexist with other 3-6-fold coordination geometries. This BaFeO 2 structure is analogous to the LaNiO 2.5 structure in that one-dimensional octahedral chains are linked by planar units, but differs in that one of the octahedral chains contains a significant amount of oxygen vacancies and that all the iron ions are exclusively divalent in the high-spin state. Mössbauer spectroscopy demonstrates, despite the presence of partial oxygen occupations and structural disorders, that the planar-coordinate Fe 2+ ions are bonded highly covalently, which accounts for the formation of the unique structure. At the same time, a rigid 3D Fe-O-Fe framework contributes to structural stabilization. Powder neutron diffraction measurements revealed a G-type magnetic order with a drastic decrease of the Néel temperature compared to that of SrFeO 2, presumably due to the effect of oxygen disorder/defects. We also performed La substitution at the Ba site and found that the oxygen vacancies act as a flexible sink to accommodate heterovalent doping without changing the Fe oxidation and spin state, demonstrating the robustness of this new structure against cation substitution. © 2012 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)11444-11454
Number of pages11
JournalJournal of the American Chemical Society
Volume134
Issue number28
DOIs
StatePublished - Jul 18 2012
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

ASJC Scopus subject areas

  • Biochemistry
  • Colloid and Surface Chemistry
  • General Chemistry
  • Catalysis

Fingerprint

Dive into the research topics of '(Sr 1-xBa x)FeO 2 (0.4 ≤ x ≤ 1): A new oxygen-deficient perovskite structure'. Together they form a unique fingerprint.

Cite this