Squaroglitter: A 3,4-Connected Carbon Net

Dasari L. V. K. Prasad, Nicholas M. Gerovac, Michael J. Bucknum, Roald Hoffmann

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Theoretical calculations are presented on a new hypothetical 3,4-connected carbon net (called squaroglitter) incorporating 1,4 cyclohexadiene units. The structure has tetragonal space group P4/mmm (No. 123) symmetry. The optimized geometry shows normal distances, except for some elongated bonds in the cyclobutane ring substructures in the network. Squaroglitter has an indirect bandgap of about 1.0 eV. The hypothetical lattice, whose density is close to graphite, is more stable than other 3,4-connected carbon nets. A relationship to a (4,4)nanotube is explored, as is a potential threading of the lattice with metal needles. © 2013 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)3855-3859
Number of pages5
JournalJournal of Chemical Theory and Computation
Issue number8
StatePublished - Jul 26 2013
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Our work at Cornell was supported by the National Science Foundation, through research grant CHE-0910623 and Efree (an Energy Frontier Research Center funded by the Department of Energy (Award Number DESC0001057 at Cornell). We acknowledge the computational resources provided by Efree, by the XSEDE network (provided by the National Center for Supercomputer Applications through Grant TG-DMR060055N), KAUST (King Abdullah University of Science and Technology) supercomputing laboratory, and by Cornell’s NanoScale Facility (supported by the National Science Foundation through Grant ECS-0335765).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'Squaroglitter: A 3,4-Connected Carbon Net'. Together they form a unique fingerprint.

Cite this