Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation

Ramy J. Swaidan, Xiaohua Ma, Ingo Pinnau

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

High performance thermally-rearranged (TR) and carbon molecular sieve (CMS) membranes made from an intrinsically microporous polymer precursor PIM-6FDA-OH are reported for the separation of propylene from propane. Thermal rearrangement of PIM-6FDA-OH to the corresponding polybenzoxazole (PBO) membrane resulted in a pure-gas C3H6/C3H8 selectivity of 15 and C3H6 permeability of 14 Barrer, positioning it above the polymeric C3H6/C3H8 upper bound. For the first time, the C3H6/C3H8 mixed-gas properties of a TR polymer were investigated and showed a C3H6 permeability of 11 Barrer and C3H6/ C3H8 selectivity of 11, essentially independent of feed pressure up to 5 bar. The CMS membrane made by treatment at 600 C showed further improvement in performance as demonstrated with a pure-gas C3H8/C3H8 selectivity of 33 and a C3H6 permeability of 45 Barrer. The mixed-gas C3H6/C3H8 selectivity dropped from 24 to 17 from 2 to 5 bar feed pressure due to a decrease in C3H6 permeability most likely caused by competitive sorption without any evidence of plasticization. (C) 2016 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)983-989
Number of pages7
JournalJournal of Membrane Science
Volume520
DOIs
StatePublished - Sep 2 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation'. Together they form a unique fingerprint.

Cite this