Abstract
FET-type devices have been fabricated by using trilayers of Nd0.7Sr0.3MnO3 (NSMO) or LaNiO, (LNO) (gate)/ LaAlO3 (LAO) (barrier) / Yba2Cu3O7 (YBCO) (channel) in order to investigate effect of quasiparticle injection into YBCO. Here, NSMO and LNO were used as gate electrodes for injection of spin-polarized and spin-unpolarized quasiparticles into the superconducting channel, respectively. When injecting along the c-axis of YBCO, the critical current was suppressed with spin-polarized qiiasiparticles 30 times more efficiently than with spin-unpolarized quasiparticles. Differential current gain, defîned as a differential change of the critical current to injection current change, has been achieved up to ∼ 16 for c-axis YBCO. If the response time is limited by quasiparticle relaxation time of ∼ 10 ps, the device may be useful for fast electronics. Preliminary high-speed measurements indicate that part of the critical current suppression may be caused by quasiparticle injection, not all by heating. When injecting along a-axis, no significant dependence on quasiparticle polarization was observed. Other superconductors such as Pr1.85Ce0.15CuO4 (PCCO) and Pbln have been tested in similar devices for comparison.
Original language | English (US) |
---|---|
Pages (from-to) | 3640-3643 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 9 |
Issue number | 2 PART 3 |
DOIs | |
State | Published - 1999 |
Externally published | Yes |
Bibliographical note
Funding Information:a) Also Department of Electical Engineering, University of Maryland, College Park. b) Present address is Solid State Electronics Group, Tata Institute Of Fundamental Research, India, c) Present address is Read-kte Corporation, 44100 Osgood Road, Fremont, CA 94539. d) Also Department of Material and nuclear Engineering, University of Maryland, College Park. Manuscript received September 14,1998. This work is supported by Office of Naval Research under Grant No. N00014-98-1-0092,
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering