Abstract
Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.
Original language | English (US) |
---|---|
Pages (from-to) | 1101-1108 |
Number of pages | 8 |
Journal | KSCE Journal of Civil Engineering |
Volume | 22 |
Issue number | 4 |
DOIs | |
State | Published - Aug 15 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This research was supported by a grant on Scale Effects in Soils from the National Science Foundation and on Hydrates from the Department of Energy and a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).