Spatially selective plasmonic sensing using metallic nanoslit arrays

Yongkang Gao, Qiaoqiang Gan, Filbert J. Bartoli

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Label-free biosensing based on extraordinary optical transmission (EOT) through metallic nanoaperture arrays is a highly promising application of nanoplasmonics. The optical properties of these nanostructures, however, are complex due to the coupling between propagating and localized plasmon resonances, and some important features of the sensing mechanism have not been fully exploited. In this paper, in contrast to most previous studies that focused on the optimization of sensor response to bulk refractive index changes, we investigate the sensor response upon biomolecule bindings at different sensor positions inside or outside the nanoapertures. By properly tuning the geometric parameters of a gold nanoslit array, we show that the enhanced optical field in this EOT-based sensor can be spatially tailored to increase its interaction volume with the binding target biomolecules and improve the sensor performance. The results presented deepen the current understanding of the EOT-based sensor properties and open up new opportunities to further optimize their sensing performance. © 2013 IEEE.
Original languageEnglish (US)
JournalIEEE Journal on Selected Topics in Quantum Electronics
Volume20
Issue number3
DOIs
StatePublished - Jan 1 2014
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spatially selective plasmonic sensing using metallic nanoslit arrays'. Together they form a unique fingerprint.

Cite this