Abstract
Many applications in computer vision, biomedical informatics, and graphics deal with data in the matrix or tensor form. Non-negative matrix and tensor factorization, which extract data-dependent non-negative basis functions, have been commonly applied for the analysis of such data for data compression, visualization, and detection of hidden information (factors). In this paper, we present a fast and flexible algorithm for sparse non-negative tensor factorization (SNTF) based on columnwise coordinate descent (CCD). Different from the traditional coordinate descent which updates one element at a time, CCD updates one column vector simultaneously. Our empirical results on higher-mode images, such as brain MRI images, gene expression images, and hyperspectral images show that the proposed algorithm is 12 orders of magnitude faster than several state-of-the-art algorithms.
Original language | English (US) |
---|---|
Pages (from-to) | 649-656 |
Number of pages | 8 |
Journal | Pattern Recognition |
Volume | 45 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2012 |
Keywords
- Columnwise coordinate descent
- Non-negative
- Sparse
- Tensor factorization
ASJC Scopus subject areas
- Software
- Signal Processing
- Computer Vision and Pattern Recognition
- Artificial Intelligence