Solar-driven ultrafast lithium extraction from low-grade brine using microfluidics-mediated vortex in scalable electrochemical reactors

Xianyun Zhang, Zhen Li, Jiang Liu, Fuzong Xu, Leiliang Zheng, Stefaan De Wolf, Zhiping Lai*, Xu Lu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Electrochemical lithium (Li) extraction from low-grade salt lake brine, when powered by off-grid renewables, represents a potential approach to meeting the substantially increasing demand for battery-grade Li2CO3. However, this technology has been drastically challenged by the low extraction rate and high production cost, largely due to the lack of research on reactor engineering and system scale-out. Herein, we rationally designed a scalable spiral-microstructured electrochemical reactor (SMER) to accomplish ultrafast and economical Li extraction under harsh brine conditions by virtue of significantly accelerated mass transfer. We showcased that the SMER was stably operated at a Li extraction rate over 5.6 times as much as that of state-of-art devices, and could be up-scaled for commercial production of battery-grade Li2CO3 driven by solar cells. This work lays the ground for sustainable Li extraction from remote low-grade salt lake brine and can be readily applied to more minable Li reserves/resources.

Original languageEnglish (US)
Article number140074
JournalChemical Engineering Journal
StatePublished - Feb 15 2023

Bibliographical note

Funding Information:
X.L. acknowledges financial support from Baseline Funds (BAS/1/1413-01-01) from King Abdullah University of Science and Technology (KAUST). Z.P.L. acknowledges Baseline Funds (BAS/1/1375-01-01) and Competitive Research Fund under Award No. URF/1/4713-01 from KAUST. S.D.W. acknowledges the KAUST Office of Sponsored Research (OSR) under Award Nos. OSR-CARF/CCF-3079, IED OSR-2019-4208 and CRG2019-4093. This research used resources from the Core Laboratories of KAUST. The authors thank Thomas Allen and Maxime Babics for their contributions in tandem solar cell fabrication and module lamination.

Publisher Copyright:
© 2022 Elsevier B.V.


  • Electrochemical reactors
  • Low-grade salt lake Brine
  • Ultrafast lithium extraction
  • Vortex

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Solar-driven ultrafast lithium extraction from low-grade brine using microfluidics-mediated vortex in scalable electrochemical reactors'. Together they form a unique fingerprint.

Cite this