Abstract
The emergence of two-dimensional (2D) MXenes as efficient light-to-heat conversion materials offers significant potential for solar-based desalination, particularly in photothermal interfacial evaporation, enabling cost-effective solar-powered membrane distillation (MD). This study investigates solar-powered MD afforded by a photothermally functionalized spacer, which is built by spray-coating Ti3C2Tx MXene sheets on metallic spacers. 2D Ti3C2Tx MXene gives an ultrahigh photothermal conversion efficiency; thereby, by Ti3C2Tx MXene-coated metallic spacer, this rationally designed spacer allows for a localized photothermal conversion and interfacial feed heating effect on the membrane surface, especially for MD operation. As a feed spacer and a photothermal element, Ti3C2Tx MXene-coated metallic spacer exhibited stable enhanced water flux of up to 0.36 kg·m−2h−1 under one sun illumination for a feed salinity of 35 g·L−1, corresponding energy conversion efficiency of 28.3 %. Overall, the developed photothermal Ti3C2Tx MXene-coated spacers displayed great potential in enhancing the performance, scalability, and feasibility of solar-driven MD process, paving the way for further development of photothermal elements that can be implemented in solar MD applications.
Original language | English (US) |
---|---|
Article number | 141129 |
Journal | Chemosphere |
Volume | 351 |
DOIs | |
State | Published - Mar 2024 |
Bibliographical note
Publisher Copyright:© 2024 Elsevier Ltd
Keywords
- Metallic spacer
- MXene
- Photothermal evaporation
- Solar energy
- Spray coating
- Surface heating membrane distillation
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- General Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis