Abstract
Monocular Depth Estimation (MDE) is fundamental in sports video understanding, enhancing augmented graphics, scene understanding, and game state reconstruction. Despite remarkable progress in autonomous driving and indoor scene understanding, there is currently a lack of MDE datasets tailored for sports. Furthermore, most existing datasets only focus on single images, disregarding the temporal aspect. In this work, we introduce the first video dataset for MDE in sports, SoccerNet-Depth, focusing on football and basketball videos. In particular, we leverage the graphic engine from video games to automatically extract video sequences and their associated depth maps, making our dataset easily scalable. Furthermore, we benchmark and fine-tune several state-of-the-art MDE methods on our dataset. Our analysis shows that MDE in sports is far from being solved, making our dataset a perfect playground for future research. Dataset and codes: https://github.com/SoccerNet/sn-depth.
Original language | English (US) |
---|---|
Title of host publication | Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 |
Publisher | IEEE Computer Society |
Pages | 3280-3282 |
Number of pages | 3 |
ISBN (Electronic) | 9798350365474 |
DOIs | |
State | Published - 2024 |
Event | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States Duration: Jun 16 2024 → Jun 22 2024 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Conference
Conference | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 06/16/24 → 06/22/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering