Abstract
In this paper we provide an improved small-signal equivalent circuit model of a synchronous Buck converter which operates in Continuous Conduction Mode (CCM) and includes an alternative Zero Voltage Switching (ZVS) mechanism for the low-side power MOSFET that rely on the MOSFETs output capacitance. The addressed analysis improves the state of the art in DC/DC small-signal modeling as it is capable to predict unexpected effects on the dynamical system response such as the dependency on input voltage introduced by parasitics. Therefore, a complete design tool which permits to evaluate the impact of the MOSFETs output capacitance and the ZVS network on the converter dynamics is proposed. The derived equivalent circuit model which includes an additional feedforward path and a feedback loop is analyzed and the main open-loop transfer functions (control-to-output, line-to-output, output impedance) are analytically assessed. A verification has been carried out through SIMPLIS circuital simulations, corroborating the validity of the whole evaluation process.
Original language | English (US) |
---|---|
Title of host publication | ISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665451093 |
DOIs | |
State | Published - 2023 |
Event | 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 - Monterey, United States Duration: May 21 2023 → May 25 2023 |
Publication series
Name | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
Volume | 2023-May |
ISSN (Print) | 0271-4310 |
Conference
Conference | 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 |
---|---|
Country/Territory | United States |
City | Monterey |
Period | 05/21/23 → 05/25/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
ASJC Scopus subject areas
- Electrical and Electronic Engineering