Abstract
Atmospheric particles experience various physical and chemical processes and change their properties during their lifetime. Most studies on atmospheric particles, both in laboratory and field measurements, rely on analyzing an ensemble of particles. Because of different mixing states of individual particles, only average properties can be obtained from studies using ensembles of particles. To better understand the fate and environmental impacts of atmospheric particles, investigations on their properties and processes at a single-particle level are valuable. Among a wealth of analytic techniques, single-particle Raman spectroscopy provides an unambiguous characterization of individual particles under atmospheric pressure in a non-destructive and in situ manner. This paper comprehensively reviews the application of such a technique in the studies of atmospheric particles, including particle hygroscopicity, phase transition and separation, and solute-water interactions, particle pH, and multiphase reactions. Investigations on enhanced Raman spectroscopy and bioaerosols on a single-particle basis are also reviewed. For each application, we describe the principle and representative examples of studies. Finally, we present our views on future directions on both technique development and further applications of single-particle Raman spectroscopy in studying atmospheric particles.
Original language | English (US) |
---|---|
Pages (from-to) | 3017-3044 |
Number of pages | 28 |
Journal | Atmospheric Chemistry and Physics |
Volume | 22 |
Issue number | 5 |
DOIs | |
State | Published - Mar 7 2022 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-07-06ASJC Scopus subject areas
- Atmospheric Science