Single-electron transistor of a single organic molecule with access to several redox states

Sergey Kubatkin, Andrey Danilov, Mattias Hjort, Jérôme Cornil, Jean Luc Brédas, Nicolai Stuhr-Hansen, Per Hedegård, Thomas Bjørnholm*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

787 Scopus citations


A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers. Coulomb charging effects have been shown to dominate such transport in semi-conductor quantum dots, metallic and semiconducting nanoparticles, carbon nanotubes, and single molecules. Recently, transport has been shown to be also influenced by spin-through the Kondo effect-for both nanotubes and single molecules, as well as by vibrational fine structure. Here we describe a single-electron transistor where the electronic levels of a single π-conjugated molecule in several distinct charged states control the transport properties. The molecular electronic levels extracted from the single-electron-transistor measurements are strongly perturbed compared to those of the molecule in solution, leading to a very significant reduction of the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. We suggest, and verify by simple model calculations, that this surprising effect could be caused by image charges generated in the source and drain electrodes resulting in a strong localization of the charges on the molecule.

Original languageEnglish (US)
Pages (from-to)698-701
Number of pages4
Issue number6959
StatePublished - Oct 16 2003
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Single-electron transistor of a single organic molecule with access to several redox states'. Together they form a unique fingerprint.

Cite this